Deposition and physical properties of thin TiO₂ and N-doped TiO₂ films prepared by High Power Impulse Magnetron Sputtering

Vitezslav Stranak¹, Marion Quaas¹, Hartmut Steffen², Robert Bogdanowicz³, Harm Wulff¹, Zdenek Hubicka⁴, and Rainer Hippler¹

¹Institute of Physics, University of Greifswald, Greifswald, Germany
²Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
³Gdansk University of Technology, Gdansk, Poland
⁴Institute of Physics, Academy of Science of the Czech Republic, Prague, Czech Republic

The chemical composition, optical, photo-catalytic, and crystallographic properties of TiO_2 and N-doped TiO_2 thin films prepared by High Power Impulse Magnetron Sputtering are studied. The phase formation on the TiO_2 films (anatase, rutile or amorphous) is adjusted via the pressure (p=0.75-15 Pa) in the deposition chamber. The different crystallographic phases were determined by grazing incidence X-ray diffractometry (GIXD). XPS measurements revealed nearly stoichiometric TiO_2 composition with a small amount of incorporated N in the films. The photo-catalytic activity was determined from decomposition of methylene blue. Optical parameters (n+ik, transmittance T, reflectance R and absorbance A) are measured as function of the photon energy in the UV-Vis range with spectroscopic ellipsometry (SE).

Work supported by the German State of Mecklenburg-Vorpommern and by the Federal Ministry for Education and research (BMBF) through grant 13N9774.